Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 30(44)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33390875

RESUMO

The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.

2.
J Clin Invest ; 129(11): 4885-4900, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31408437

RESUMO

Deciphering novel pathways regulating liver lipid content has profound implications for understanding the pathophysiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Recent evidence suggests that the nuclear envelope is a site of regulation of lipid metabolism but there is limited appreciation of the responsible mechanisms and molecular components within this organelle. We showed that conditional hepatocyte deletion of the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1) caused defective VLDL secretion and steatosis, including intranuclear lipid accumulation. LAP1 binds to and activates torsinA, an AAA+ ATPase that resides in the perinuclear space and continuous main ER. Deletion of torsinA from mouse hepatocytes caused even greater reductions in VLDL secretion and profound steatosis. Both of these mutant mouse lines developed hepatic steatosis and subsequent steatohepatitis on a regular chow diet in the absence of whole-body insulin resistance or obesity. Our results establish an essential role for the nuclear envelope-localized torsinA-LAP1 complex in hepatic VLDL secretion and suggest that the torsinA pathway participates in the pathophysiology of nonalcoholic fatty liver disease.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Membrana Nuclear/metabolismo , Animais , Proteínas de Transporte/genética , Hepatócitos/patologia , Metabolismo dos Lipídeos , Lipoproteínas VLDL/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Membrana Nuclear/genética , Membrana Nuclear/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...